Finite strain FE2 analysis with data-driven homogenization using deep neural networks

نویسندگان

چکیده

A data-driven deep neural network (DNN) based approach is presented to accelerate FE2 analysis. It computationally expensive perform multiscale analysis since at each macroscopic integration point an independent microscopic finite element needed. To alleviate this computational burden, DNN surrogates are proposed for nonlinear homogenization that can serve as effective macroscale material models. probabilistic considered surrogates’ development, and efficient data sampling strategy from the deformation space used generating training validation datasets. Frame indifference of behavior consistently handled, two methods – regular where only input/output pairs included in dataset via L2 loss function, Sobolev derivative also with function compared. Numerical results demonstrate leads a higher testing accuracy compared training, DNNs accurate

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Data driven articulatory synthesis with deep neural networks

The conventional approach for data-driven articulatory synthesis consists of modeling the joint acoustic-articulatory distribution with a Gaussian mixture model (GMM), followed by a post-processing step that optimizes the resulting acoustic trajectories. This final step can significantly improve the accuracy of the GMM frame-by-frame mapping but is computationally intensive and requires that th...

متن کامل

Using Neural Networks with Limited Data to Estimate Manufacturing Cost

Neural networks were used to estimate the cost of jet engine components, specifically shafts and cases. The neural network process was compared with results produced by the current conventional cost estimation software and linear regression methods. Due to the complex nature of the parts and the limited amount of information available, data expansion techniques such as doubling-data and data-cr...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Data-Driven Flood Detection using Neural Networks

This paper describes the approaches used by our team (MultiBrasil) for the Multimedia Satellite Task at MediaEval 2017. For both disaster image retrieval and flood-detection in satellite images, we employ neural networks for end-to-end learning. Specifically, for the first subtask, we exploit Convolutional Networks and Relation Networks while, for the latter, dilated Convolutional Networks were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Structures

سال: 2022

ISSN: ['1879-2243', '0045-7949']

DOI: https://doi.org/10.1016/j.compstruc.2022.106742